
Scripting Digital Micrograph™

Dave Mitchell
www.dmscripting.com

adminnospam@dmscripting.com (remove the nospam)

Workshop Aims
• To provide users with a basic understanding of :

 What scripts are.
 How they work.
 What scripts can do.
 How to write scripts.
 What scripting resources are available.

• Enlarge the pool of scripting talent.

Why Script?
• No software does everything you want.
• Customisable software enables:

 Simplified and efficient experimental work flows.
 Everything to be done within DM.
 Creation of extended and new EM capabilities.
 Use DM for ‘other things’ eg optical microscopy.
 Enables sharing of experimental methods via the common DM platform.

Anatomy of a Script

• Filename - ‘Script Name.s’
• Scripts (extension= .s).
• Simple text files.
• Can be created in DM or any text editor.
• White space is ignored and no line numbers.
• Commands are not case sensitive.
• Usually a single command per line followed by a carriage return.
• Scripts are interpreted not compiled - SLOW!!!!
• Whole image operations are supported - FAST!!!!

1. Script Basics
• Learning objectives:

 How to create a script.
 How to edit a script.
 How to save a script.
 How to execute a script.
 How to halt a script.
 How to install a script.

1. Script Creation
• From the File Menu select New Script or enter CONTROL + K

Exercise 1a. Editing, Saving & Execution

• Simply type in the commands into the script window.
• Save the script using File/Save As with the option Script Files(*.s).
• Execute the script by having it foremost and hitting CONTROL + ENTER
• Run script 1a.

Commands used in Script 1a:
// (Comments)
void Result(String)
(outputs to Results Window)

1. Playing with the Script

• Run the script 3 times.
• Edit the ‘result’ command in the script to read each of the following

then run it:
result(“Hello World\n”)
result (“Hello World\n”)
RESULT(“Hello World\n”)
result(“Hello\t World\n”)
result(Hello World\n)

• Note \n and \t add carriage returns and tabs to strings respectively -
use these for formatting your outputs.

1. Halting a Script
• Scripts can get into infinite loops.
• Careful coding can help trap for these.
• If an infinite loop occurs halt the script with CONTROL + NUM

LOCK (on the numeric keypad - it may vary with keyboard
mapping).

1. Installing a script
• Have the script foremost in DigitalMicrograph (title bar is blue).
• From the ‘File’ menu select ‘Install Script’.
• The default installation menu is the ‘Custom’ menu and you can

create a sub-directory within that menu. Alternatively, create a new
menu of your own, also with sub-directories if required.

• Select the name for the menu function - it takes the name of the
script by default, but this may be longer than ideal - truncate if
necessary.

• Click install - the script becomes available in the chosen menu.
• Installed scripts stored inside the ‘Preferences.dm8’ file, inside the

/Programs/Gatan/DigitalMicrograph/Preferences folder.
• Script installations can be copied between installations of

DigitalMicrograph by simply copying the .dm8 preference file.
• Scripts defining functions (see later) can be installed as Library files

which other scripts can call.

1. Review
• Learning objectives:

 How to create a script.
 How to edit a script.
 How to save a script.
 How to execute a script.
 How to halt a script.
 How to install a script.

2. Understanding and using Variables
• Learning Objectives:

 What the different types of variables are.
 How to declare variables.
 How to carry out simple operations with variables.
 Some special image variables and sub-area operations.

2. What are Variables?
• Variables are containers which hold information.
• Information may be a number, a string of text, an image etc.
• In DM scripting variables must be declared so that the computer

knows what the variable is called, and what type of information it will
hold, and possibly what its value is.

• Declaring a variable will initialise it (sets its value to zero).
• Variables remain in scope until the script ends.
• Variables have a name, a type and a value.
• Variables can be Global or Local in scope (more later).

2. Variable Names
• Variables can be called virtually anything eg a, z, potato,

alphabet123
• They can not be called, or start with, a number eg variable names of

1, 123alphabet are illegal, and spaces are not allowed.
• It is good practice to use intuitive variable names ie use

‘temperature’ instead of ‘t’.
• Capitalisation of longer variable names helps with readability eg use

‘CoreTemperature’ rather than ‘coretemperature’.
• Note ‘CoreTemperature’ will be treated the same a

‘coretemperature’ - there is no case sensitivity.

2. Variable Types
• The main types of variable are:
• number - shorthand for realnumber:

 Number variables hold numerical values eg
CoreTemperature=542.723, BoilingPoint=100

 Number variables can store integer or real values.
• string:

 String variables hold text values eg
MyName=“Dave”
MyAge=“21”

 Note the variable MyAge is a string not a number - so the expression
number Realage=2 x MyAge will not work.

• image:
 Image variables hold images - of which there are several types.

2. Declaring Variables
• All variables used must be declared.
• Declaration of variables is usually at the start of the script.
• Variables declared in this way are said to be Global - ie any part of

the script has access to and can change a Global variable.
• For simple scripts making all your variables Global is fine.
• Complex scripts which use functions, class methods etc should use

predominantly local variables (more later).

Exercise 2a. Declaring Variables
(number and string)

• Run script 2a to see how the following variables appear.

number temperature, time, gravity
number acceleration=9.8
number ZeroPoint=273.15, delay=10
number BoilingPoint=ZeroPoint+100

string day, month
string MyName=“Dave”, Surname=“Mitchell”
string FullName=Myname+” “+Surname
string MyAge=“My Age =“+21

2. Test your Variable Skills
• Write a short script in which you declare variables to represent:

 Day
 Month
 Year
 Date

• Then outputs these to the Results Window in the form :
‘Today is : Sunday, 10 February, 2008’

• NB the answer to this is in the Answer Scripts folder as:
 ‘2 Answer to test your variable skills’

Useful Script Commands:
number NumberVariable (declares a number)
string StringVariable (declares a string)
Result(string) (outputs string to Results Window)
// (Comments)
/n (in strings adds a carriage return to a string)
/t (in strings adds a tab to a string)

2. Image Types
• Before discussing declaration of image variables it is important to

understand the types of images which DM supports:

2. Declaring Image Variables
• Image variables are declared like any other variable:

image FrontImg, AverageImage
• The foremost image in DM can be referenced as follows:

image FrontImg:=getfrontimage()
• New (empty) integer images can be created as follows:

image NewImg:=integerimage(“”,bytes,sign, x,y)
Where “” is a null string, bytes = no. of bytes in the image (1, 2, or 4),
sign = (0=unsigned, 1=signed), and x & y = pixel dimensions.

• New (empty) real images can be created as follows:
image NewImg:=realimage(“”,bytes, x,y)

There is no sign value to a real image, as by definition it can handle negative
numbers, bytes can be 4 or 8.

• Maths on image variables is similar to any other variable:
image FlatImg:=getfrontimage()
image RootImg=sqrt(FlatImg)
image SquaredImg=FlatImg*FlatImg

2. Explicit vs Implicit Image Creation
• The previous example of creating an image by calling an image

creation function is referred to as Explicit Creation eg
image myimg:=binaryimage(“”,xsize, ysize)

• Explicitly creates an image called myimg, which is a binary image of
dimensions xsize and ysize.

• Fortunately DM also creates images implicitly by context. This
avoids the need to define image types and sizes every time a new
image is created.

• Implicit creation will automatically create an image of the appropriate
type and size, based on the context of the image operation eg

image newimg= oldimg+5
• Creates an image variable called newimg, which is the same size as

oldimg and is of type real.
• There are three default image types for implicit creation:
• Real, Complex and RGB (binary & integer operations default to real)

Exercise 2b. Declaring Image Variables
• Open the image ‘Polycrystalline gold pattern’.
• Open script 2b and run it.

Declare some image variables
Carry out simple image maths

image FrontImg, SqrtImg
FrontImg:=getfrontimage()
SqrtImg=sqrt(FrontImg)

showimage(SqrtImg)
setname(SqrtImg, “Square Root of Image”)

2. Test your Image Variable Skills
Write a script to:
Calculate the min, max & mean values in the original gold pattern.
Display these values in the Results Window.

• NB the answer to this is in the Answer Scripts folder as:
 ‘2 Answer to test your image variable skills’

Useful Script Commands:
image ImageVar (declares an image variable called ImageVar)
ImageVar:=getfrontimage() (gets foremost image as imagevar)
minmax(ImageVar, min, max) (gets the min/max (numbers) of an image)
number meanval=mean(ImageVar) (gets the mean of an image)

2. Special Image Variables : ID
• Every image in DM has an identifying reference letter .
• These can be used in scripts to refer to images.
• For example the script:

Setname(a, “New Image Name”)
• Changes the name of image a (not case sensitive) from ‘untitled’ to ‘New

Image Name’.
• Scripts can use ID variables without declaring them or ‘getting’ them - this is

very handy for ‘on-the-fly’ scripting to manipulate images directly.

Exercise 2c. Special Image Variables :
Intrinsic

• Intrinsic variables are ‘intrinsic’ to images.
• icol - the position of a column in an image.
• irow - the position of a row in an image.
• iradius - the distance from the geometric centre of an image.
• Others: iheight, ipoints, itheta, iwidth, iplane

Note image origin in
DM is top left

• Open and run script 2c
• Relate the resulting images with

the code which creates them

Irow=0
1
2
3

Icol=0 1 2 3 4

Image

2. Image Sub-regions []
• Sub-regions of images can be defined with [].
• The script :

image FrontImg:=getfrontimage()
image SubImg=FrontImg[]
 Assigns a sub-region in FrontImg (defined by a rectangular region of

interest (ROI)) to SubImg. If no ROI is present, SubImg is set to
FrontImg

• The script :
Image FrontImg:=getfrontimage()
Image SubImg=FrontImg[top, left, bottom, right]
 Assigns a sub-region of FrontImg to SubImg. The region is defined by

four numbers : top, left, bottom right - in pixels.
 The sub-region must lie within the bounds of the image.
 The origin in images is the top left corner.

Exercise 2d Image Sub-regions []
• Open ‘Gold Test

Image’.
• Open and run script 2d.

• Get ‘Gold Test
Image’ foremost.

• Add an ROI to
 the image.
• Run script 2d.

2. Review
• Learning Objectives:

 What the different types of variables are.
 How to declare variables.
 How to carry out simple operations with variables.
 Some special image variables and sub-area operations.

3. Operators
• Learning Objectives:

 Understand the available operators.
 Use operators in scripts.
 Understand the difference between assignment (=) and assignment by

reference(:=).

3. Operators
• Arithmetic:

 + addition : expr+expr
 - subtraction : expr-expr
 * multiplication : expr*expr
 / division : expr/expr
 ** exponentiation : expr**expr

• Equality (return true=1 or false=0):
 == Equality expr==expr (works on strings too)
 != Inequality expr!=expr (works on strings too)

• Relational (return True=1 or False=0):
 < less than, <= less than or equal : expr<=expr
 > greater than, >= greater than or equal : expr>-expr

• Logical (return True=1 or False=0):
 ! Logical NOT : !expr
 II Logical OR : expr || expr
 && Logical AND : expr && expr

Exercise 3a. Assignment vs Reference
image test=getfrontimage() (= works on all variable types).

 Means create a new image called test and make its contents equal (=)
to those of the frontmost image.

 The new image (test) has no title, no scale bar and is of type real,
regardless of the type of whether the original image is binary, integer or
real (implicit creation)

image test:=getfrontimage() (:=works on images only).
 Means create a new image variable (test) and assign it by reference (:=)

so that it becomes a pointer to the frontmost image.
 The ‘new’ image is the frontmost image (no new window) and all the

original image details are present (name, scale bar etc).
• Open the image ‘Gold Test Image’.
• Run script 3a - then change the = to := and rerun the script.

3. Review
• Learning Objectives:

 Understand the available operators.
 Use of operators in scripts.
 Understand the difference between assignment (=) and assignment by

reference(:=).

4. If Statements
• Learning Objectives:

 Understand the use of various forms of If() statements.
 Understand the use of !, != and == operators in if() statements.

Exercise 4a. If() Statements with various
operators

• If(expr) statements evaluate an expression (expr).
• They have the following forms:

 If(expr is true) execute this command eg.
if(3>2) okdialog(“Yes”)
will display “Yes” on the screen because 3 is greater than 2.
 If(!true) execute this command (! Is the logical NOT).
if(!(2>3)) okdialog(“Yes”)
will display “Yes” because 2>3 is Not True.
if(!(3>2)) okdialog(“Yes”)
will display nothing because 3>2 is True.

• Run script 4a - work through the list of if() statements and predict
whether they will display ‘Yes’ on the screen. Remove the
comments (//) from the statement and run the script - were you
correct?

• Replace the comments and move on to the next if() statement.

4. If() continued
• Other forms of If() statements.
• If(expr)

{
if expr is true execute all the code between these { }

}

If(expr)
{

if expr is true execute all the code between these { }
}

Else
{

otherwise execute all the code between these { }
}

4. Test Your if() Skills
• Write a script which :

 Creates two number variables : First, Second
 Assigns values to the two variables.
 Evaluates these variables reporting on three possible conditions:

1. First has a value greater than Second.
2. First has the same value as Second.
3. First has a value less than Second.

 Reports on the condition by showing the status on screen.
 Test your script with values of First and Second of:

 5 and 10; 10 and 10; and 15 and 10 respectively.

• NB the answer to this is in the Answer Scripts folder as:
 ‘4 Answer to test your if skills’

Useful Script Commands:
okdialog(string prompt)
If(expr) command (If expr is true then command is executed)

4. Review
• Learning Objectives

 Understand the use of various forms of If() statements
 Understand the use of !, != and == operators in if() statements

5. Inputs and Outputs
• Learning Objectives:

 How to source strings/numbers/images.
 How to display answers.
 How to save an image.

Exercises 5a,b Getting Strings &
Numbers and Displaying Answers.

• Prompt for strings with the getstring() command:
number getstring(string prompt, string default, string value)
 number takes values of 1 (True) if OK is pressed, 0(False) if Cancel is

pressed in the getstring() dialog.
• Prompt for numbers with the getnumber() command:

number getnumber(string prompt, number default, number value)
• Display Answers with:

showalert(string, number alerttype) (alerttype has values 0-3)
okdialog(String prompt)

• Run script 5a and identify the problems with the data input method.
• Run script 5b - see how the data input problems have been solved.

5. Sourcing Displayed Images
• The foremost image is sourced with:

Image front:=getfrontimage()
• Select a single image with a prompt:

getoneimagewithprompt(string prompt, string “”, image select1)
 There are 3 variants of this command :
gettwoimages . . ; getthreeimages. . ; getfourimages . .
With the appropriate number of image variables added :
. . . image select2; . . image select3; . . image select4).
 These functions return 1 when OK is pressed and O when Cancel is

pressed.

5. Opening and Saving Images
• Image files can be opened by putting up a dialog to identify the file, then

opening the file as follows:
string path
if(!opendialog(path)) exit(0)
image HDImage:=openimage(path)
showimage(HDImage)

• Note use := openimage() rather than =openimage() unless you want to
make a copy of the image file.

• The foremost image can be saved in Gatan format as follows:
image front:=getfrontimage()
string prompt, default, savepath
if(!saveasdialog(prompt, default, savepath)) exit(0)
saveasgatan(front, savepath)

• There are related commands for other image formats such as
saveastiff(front, savepath)

5. Image Manipulation and Saving
• Write a script to:

 Get the gold diffraction pattern out of several images displayed on screen.
 Prompt the user for a number (divisor value) (range 0.1-5).
 Select the top left quarter of the image.
 Divide this region by the divisor value supplied and display the image
 Save the resulting image to the desktop.

• NB the answer to this is in the Answer Scripts folder as:
 ‘5 Answer to image manipulation and save

Useful Script Commands:
getoneimagewithprompt(prompt, default, imgvar) (Select a displayed image)
getnumber(prompt, defaultno, enteredno) (Prompt for a number)
img[top, left, bottom, right]= expr (set the sub area of img to expr)
showimage(imgvar) (shows imgvar - brings it to front)
showalert(alert, type) (shows a string as an alert string of type 0-3)
If(!saveasdialog(prompt, “”, path)) exit(0) (get a save path - exits on Cancel)
saveasgatan(image, path) (saves image to path)
getsize(image, xsize, ysize) (gets the size of image in x and y)

5. Review
• Learning Objectives:

 How to source strings/numbers/images.
 How to display answers.
 How to save an image.

6. Tert(), Loops and More Variables
• Learning Objectives:

 Understand the power of tert().
 Implementation of loops : for() and while().
 Global vs Local variables.

6. My Favorite Command : Tert()
• Tert () is an extremely useful command for manipulating images. It

allows the equivalent of an if(expr) condition to be applied to each
pixel in an image - in parallel ie it is fast.

• It has the general form:
number Tert(expr, number trueval, number falseval)

• It can take numbers or images as its arguments and return.
• Example:

imgvar=tert(imgvar<0, 0, imgvar)
• If the levels in imgvar are <0 (True) set those values to 0. If this

condition is False, then the values are left unchanged - this is really
useful for stripping out negative numbers - such as occur in
EFTEMS.

• Write a one line script using the image ID variable with tert() to
remove negative numbers from the gold diffraction pattern.

Exercises 6a,b. Using Tert()
• Tert() statements are not limited to changing the image being

evaluated.
• Thresholding/Measurement with tert() can be done using binary

images to store grey scale levels.
• This script excerpt shows how to measure the number of pixels in an

image (front) between the grey scale levels 80 and 120 inclusive. The
regions where this condition is True are set to True(1) in a binary
image (binimg).

image binimg:=binaryimage(“”, xsize, ysize)
binimg=tert(front>=80 && front<=120, 1, 0)

• Open the ‘Gold Test Image’ and experiment with different threshold
values in script 6a.

• Open the ‘Gold Diffraction Pattern’ and experiment with script 6b.

6. For() and While() Loops
• Increment or decrement processes can be achieved with for() loops.
Number i
For(i=0; i<var; i++)

{
Code here is repeatedly executed while i is less than var - break terminates

}
Once i is no longer less than i script execution continues here

• i++ is a shorthand meaning i=i+1, i-- means i=i-1
• break will cause the loop to terminate and the script to continue
• while(expr)

{
creates a loop which continues while ever expr is True - break terminates

}
• Write a script using for() which writes the numbers 0-10 incl., and the sum of

their squares (02), (02+12),(02+12+22) etc to the Results window.
• Edit the script so that it terminates if the sum of the squares >99.
• NB Answer is in Answer Scripts folder : ‘6 Answer to for and while loops’

Exercises 6c,d. Global vs Local Variables
• In DM variables can be Global or Local:

 Global variables can be accessed and changed (be within scope) from
anywhere in the script.

 Local variables can only be accessed and changed (be within scope)
from within the section of code they are declared in.

 It is permissible to have a global and local variable of the same name.
• Controlling access to Global variables is easy in short scripts.
• In complex scripts using Global variables extensively can create

runtime errors which are difficult to trace. Local variables help.
• Variables are made local when declared within a section of code

bounded by { } ie within if(), while(), for() statements.
• Functions (see later) contain only local variables and their extensive

use can avoid the issues described here.
• Run scripts 6c and 6d.

6. Review
• Learning Objectives:

 Understand the power of tert().
 Implementation of loops : for() and while().
 Global vs Local variables.

7. Functions
• Learning Objectives:

 Understand the advantages of using functions.
 Function return types and arguments.
 Getting more than one return from a function using arguments passed

in by reference.

7. Functions
• Writing scripts as sequential instructions is fine for short scripts of

perhaps a dozen lines or less.
• It is a very poor way of writing longer scripts because:

 Logical flow is difficult to follow.
 Debugging is difficult.
 Testing is laborious - dependency on other (buggy) code.
 Sections of code may need to be duplicated - code bloat.
 Maintaining the code is challenging.
 Re-using code fragments in other scripts is nearly impossible.
 Management of variables is a difficult.

• All these problems can be resolved by writing code in the form of
functions.

• When writing longer scripts you MUST use functions!!!!

7. Advantages of Functions
• Functions are standalone pieces of code either embedded in a script

or saved as a library.
• A function is a black box which typically requires a very limited

range of inputs (arguments) and produce a very limited range of
outputs (returns).

• Once written, what happens inside a function becomes unimportant
to the script. The only thing which matters are the inputs and the
outputs.

• Variables in a function are local and are unaffected by the rest of the
script.

• Functions can simply be copied from script to script.
• Functions are called from the main script, leading to very simple

scripts.
• Functions can be developed in isolation to the main script

simplifying debugging.

7. The Forms of Functions
• The simplest function - no arguments, no returns.
• All functions must be declared with a return type: void, image, string,

number etc.
• void is the return type when the function returns nothing.
• There should be no external dependencies eg on Global Variables.

void MyFunction()
{

Function code goes here
}

// Main script
Myfunction()

Exercise 7a. A Simple Function
void SayGDay()

{
okdialog(“G’Day Scripters”)
return

}

// Main program
SayGDay()
• Important: The function must be declared before it is called, so functions are

usually placed at the start of a script.
• At declaration functions must specify a return type. If they return nothing,

the type is void.
• Open script 7a - run it.
• Remove the function call (SayGDay()) from the script then install it as a

library.
• Write a one line script to access it.

Exercise 7b. Returns from Functions
• Functions can return a single variable only - which can be of any

type - string, number, image etc.

number CalculateSquare(number EnteredValue)
{

number SquaredValue=EnteredValue*EnteredValue
return SquaredValue

}

// Main program
number Anumber=5, SquaredValue
SquaredValue=CalculateSquare(Anumber)

• Run script 7b

Exercise 7c. Multi-argument Functions
• Functions can take any number of arguments of any type.
• Too many arguments will make the function cumbersome to use.
• Try and keep functions simple - write 2 simple functions rather than

one complex one.
number CalculateArea(number length, number breadth)

{
number area=length * breadth)
return area

}

// Main program
number mylength=5, mybreadth=10, myarea
myarea=CalculateArea(mylength,mybreadth)
• Run script 7c

Exercise 7d. Functions - returning more
than one value

• Only one variable can be returned from a function.
• This limitation can be overcome by passing in arguments to a function by

reference with the use of &.
• Here the function changes the value of the reference arguments.

void RootSqr(number myvalue, number &squareval, number &rootval)
{

squareval=myvalue*myvalue
rootval=sqrt(myvalue)
return

}
// main program
number testval=25, testsqrd, testroot
RootSqr(testval, testsqrd, testroot)
okdialog(“My Number=“+testval+” Square=“+testsqrd+” Root=“+testroot)

• Run script 7d.

7. The Ideal DM Script
• The vast majority of the script functionality is declared in functions.
• The main script is predominantly a handful of function calls.
// Functions begin here
type Function1()

{
}

type Function2()
{
}

etc

// Main program
Function1()
Function2()
etc
• NB type is void, image, number, string etc.

7 Review
• Learning Objectives:

 Understand the advantages of using functions.
 Function return types and arguments.
 Getting more than one return from a function using arguments passed

in by reference.

8. Debugging and Good Scripting
Practice

• Learning Objectives:
 Understand the limitations of the DM software development

environment.
 Good habits for creating robust and maintainable code.
 Debugging techniques.

8. Debugging and Good Scripting
Practice

• Learning Objectives:
 Understand the limitations of the DM software development

environment.
 Good habits for creating robust and maintainable code.
 Debugging techniques.

8. Good Scripting Habits
• Add a title, version, date and detailed description at the start of your

script.
• Annotate scripts with comments and put spaces before and after.
• Use simple functions wherever possible with no external

dependencies.
• Limit the use of global variables.
• Use intuitive variable names.
• Indent loops and if statements especially where nested.

for(i=0; i<20; i++)
{

ExecuteMyFunction(i)
}

• Break up scripts into blocks of 4 lines with spaces between.
• Save scripts under different version names (080210 1a script name)

on completion of each development stage - every 10mins or so.

8. Debugging - Interpretation Errors
• Script errors are reported in a dialog and potential matches are

suggested in the Results Window.
• The insertion point moves to where the error occurred.
• The offending command is highlighted .

Tip:Execute commands
 as single line scripts with
no arguments or returns
(eg getsize()) to:
a) get the syntax;
b) see if command exists.

8. Debugging - Run Time Errors
• Track variable values by inserting okdialog(), result() or

showimage() commands which output them.
• Stop the script by inserting exit(0) at appropriate points.
• Isolate single commands by commenting them out with //.
• Isolate blocks of commands by enclosing them between

/*
Commands here are ignored
*/

• Major sources of error : variables not declared or misspelled, failure
to close loops correctly, confusing (= , ==) and (= , :=), confusing
local and global variables, wrong command syntax.

Exercise 8a,b Find the Bugs
• Open script 8a. This script will not run, it contains a number of

interpretation errors.
• The script simply carries out some maths on the supplied constants
• Debug the script and get it to run.
• It should put up a dialog with the answer.

• Open script 8b. This script will not run. It contains a number of
interpretation errors as well as runtime errors.

• The script should print the 0 - 5 multiplication table to the Results
Window.

• Can you find the bugs?
• NB Debugged scripts are in Answers folder as ‘8a Debugged’ etc.

8. Review
• Learning Objectives:

 Understand the limitations of the DM software development
environment.

 Good habits for creating robust and maintainable code.
 Debugging techniques.

9. Scripting Resources - Online Help
• Online help contains good example code and explanations. Specific

commands can be hard to find quickly.

9. Scripting Resources - DMSUG
• The Digital Micrograph Scripting Users Group (DMSUG).
• ≈80 subscribers including Gatan staff.
• https://lists.asu.edu/cgi-bin/wa?A0=DMSUG

9 Scripting Resources - Script Command
Web Archive (on CD and DM Script Database)

• Originally Gatan posted a full listing of scripting commands on the
web - it is now incorporated into the online help.

• ‘DM Script and Dialog’ functions is a web archive of the original
web-based listing.

• Use it to find commands quickly by keyword searching (ALT +f).
• Look for candidate commands for the functionality you require.
• Much quicker than looking in the online help.

9. Digital Micrograph Script Database
• Repository for dozens of donated scripts, tutorials and example

scripts.
• Please consider donating your scripts.
• http://www.felmi-zfe.tugraz.at/dm_scripts/dmscript1.html

10. Scripting Potential
• Scripting is very powerful, enabling DM to be tailored to meeting the

experimentalist’s needs.
• Scripts range from a simple image manipulation through to

sophisticated dialogs for hardware control.
• Experiment!

Script-based control
Interface for a
Digitally Controlled
Hollow Cone Device

Workshop Aims : Review
• To provide users with a basic understanding of :

 What scripts are.
 How they work.
 What scripts can do.
 How to write scripts.
 What scripting resources are available.

• Enlarge the pool of scripting talent.

Scripting Digital Micrograph™

Dave Mitchell
www.dmscripting.com

adminnospam@dmscripting.com (remove the nospam)

