Scripting Digital Micrograph™

Dave Mitchell
www.dmscripting.com
adminnospam@dmscripting.com (remove the nospam)

Workshop Aims

« To provide users with a basic understanding of :
» What scripts are.
» How they work.
» What scripts can do.
» How to write scripts.
» What scripting resources are available.

« Enlarge the pool of scripting talent.

Why Script?

* No software does everything you want.

« Customisable software enables:
» Simplified and efficient experimental work flows.
» Everything to be done within DM.
» Creation of extended and new EM capabilities.
» Use DM for ‘other things’ eg optical microscopy.
» Enables sharing of experimental methods via the common DM platform.

Anatomy of a Script

Filename - ‘Script Name.s’ N
Scripts (extension= .s). %

Simple text files.

Can be created in DM or any text editor.
White space is ignored and no line numbers.
Commands are not case sensitive.

Usually a single command per line followed by a carriage return.
Scripts are interpreted not compiled - SLOW!!!!

Whole image operations are supported - FAST!!!!

Scripk Name.s

1. Script Basics

« Learning objectives:
» How to create a script.
» How to edit a script.
» How to save a script.
» How to execute a script.
» How to halt a script.
» How to install a script.

1. Script Creation

From the ~//e Menu select \'ew Scripf or enter CONTROL + K

i DigitalMicrograph

|F||e Edit Display Process ﬁmalysus Window Mlcroscope Spectrum EELS DIFPACK Custom lefTooIs EELSTooIs User Imag

Mew. . Chrl+N
O_Jaen Ctrl+O
Import Data...

© New Script... Ctri+K
Close Cerl+w
Save Ctrl+5
Save As...

Save Mumbered Chrl+Y
Save Display As,., Ctrl+G

Batch Convert ... Ctrl+B

Global Infa... Ctrl+1
Page Setup...
Print... Ctrl+P

Install Script...
Install Script File...
Remove Script...

Exit

Exercise 1a. Editing, Saving & Execution

Simply type in the commands into the script window.

Save the script using

with the option Script Files(*.s).

Execute the script by having it foremost and hitting CONTROL + ENTER

Run script 1a.

Commands used in Script 1a:
/I (Comments)

void Result(String)
(outputs to Results Window)

Hello world

\ L

1. Playing with the Script

Run the script 3 times.
Edit the ‘result’ command in the script to read each of the following
then run it:

result(“Hello World\n”)

result (“Hello World\n”)

RESULT(“Hello World\n”)

result(“Hello\t World\n”)

result(Hello World\n)

Note \n and \t add carriage returns and tabs to strings respectively -
use these for formatting your outputs.

1. Halting a Script

Scripts can get into infinite loops.
Careful coding can help trap for these.

If an infinite loop occurs halt the script with CONTROL + NUM
LOCK (on the numeric keypad - it may vary with keyboard

mapping).

1. Installing a script

Have the script foremost in DigitalMicrograph (title bar is blue).
From the ‘File’ menu select ‘Install Script'.

The default installation menu is the ‘Custom’ menu and you can
create a sub-directory within that menu. Alternatively, create a new
menu of your own, also with sub-directories if required.

Select the name for the menu function - it takes the name of the
script by default, but this may be longer than ideal - truncate if
necessary.

Click install - the script becomes available in the chosen menu.

Installed scripts stored inside the ‘Preferences.dm8’ file, inside the
/Programs/Gatan/DigitalMicrograph/Preferences folder.

Script installations can be copied between installations of
DigitalMicrograph by simply copying the .dm8 preference file.

Scripts defining functions (see later) can be installed as Library files
which other scripts can call.

1. Review

« Learning objectives:
» How to create a script.
» How to edit a script.
» How to save a script.
» How to execute a script.
» How to halt a script.
» How to install a script.

2. Understanding and using Variables

« Learning Objectives:
» What the different types of variables are.
» How to declare variables.
» How to carry out simple operations with variables.
» Some special image variables and sub-area operations.

2. What are Variables?

Variables are containers which hold information.
Information may be a number, a string of text, an image etc.

In DM scripting variables must be declared so that the computer
knows what the variable is called, and what type of information it will
hold, and possibly what its value is.

Declaring a variable will initialise it (sets its value to zero).
Variables remain in scope until the script ends.

Variables have a name, a type and a value.

Variables can be Global or Local in scope (more later).

2. Variable Names

Variables can be called virtually anything eg a, z, potato,
alphabet123

They can not be called, or start with, a number eg variable names of
1, 123alphabet are illegal, and spaces are not allowed.

It is good practice to use intuitive variable names ie use
‘temperature’ instead of ‘t'.

Capitalisation of longer variable names helps with readability eg use
‘CoreTemperature’ rather than ‘coretemperature’.

Note ‘CoreTemperature’ will be treated the same a
‘coretemperature’ - there is no case sensitivity.

2. Variable Types

The main types of variable are:
number - shorthand for realnumber:
» Number variables hold numerical values eg
CoreTemperature=542.723, BoilingPoint=100
» Number variables can store integer or real values.
string:
» String variables hold text values eg
MyName="Dave”
MyAge=""21"
» Note the variable MyAge is a string not a number - so the expression
number Realage=2 x MyAge will not work.
image:
» Image variables hold images - of which there are several types.

2. Declaring Variables

All variables used must be declared.
Declaration of variables is usually at the start of the script.

Variables declared in this way are said to be Global - ie any part of
the script has access to and can change a Global variable.

For simple scripts making all your variables Global is fine.

Complex scripts which use functions, class methods etc should use
predominantly local variables (more later).

Exercise 2a. Declaring Variables
(number and string)

* Run script 2a to see how the following variables appear.

number temperature, time, gravity
number acceleration=9.8

number ZeroPoint=273.15, delay=10
number BoilingPoint=ZeroPoint+100

string day, month

string MyName="Dave”, Surname=“Mitchell”
string FullName=Myname+” “+Surname
string MyAge="My Age ="+21

The

The
The
The
The
The

The

The
The
The
The
The
The

number

number
number
number
number
number

string

string
string
string
string
string
string

=10 x|

variables we declared are:

variable temperature =0
variable time =0

variable acceleration =39.8
variable delay =10

variable BoilingPoint =373.165

variables we declared are:

variable day =

variable month =

variable MyName =Dave

variable Surname =Mitchell
variable Fullname =Dawve Mitchell
variable MyAge =My Age =21

Al

2. Test your Variable Skills

« Write a short script in which you declare variables to represent:

Useful Script Commands:

> Day number NumberVariable (declares a number)

» Month string StringVariable (declares a string)

> Year Result(string) (outputs string to Results Window)
> Date /I (Comments)

/n (in strings adds a carriage return to a string)
/t (in strings adds a tab to a string)

* Then outputs these to the Results Window in the form :
‘Today is : Sunday, 10 February, 2008’
 NB the answer to this is in the Answer Scripts folder as:

2. Image Types

« Before discussing declaration of image variables it is important to
understand the types of images which DM supports:

Kind Size Signed Range Smallest Value
Binary 1 0or1 1
Integer 1 Signed 12810 127 1
1 Unsigned 0to 255 1
2 Signed 3276810 32,767 1
2 Unsigned 0to 65,535 1
4 Signed -2.147 483 648 to 1
2,147 483 647
4 Unsigned 0to 4,294 967,295 1
Real 4 +3 4E+38 1.5E-45
8 +1 7TE+308 5 0E-324
Complex |8 +3 4E+38 1.5E-45
16 +1 7TE+308 5 0E-324
RGB 4 RIG/BIA 0 to 255 1

2. Declaring Image Variables

Image variables are declared like any other variable:
image Frontimg, Averagelmage
The foremost image in DM can be referenced as follows:
image Frontimg:=getfrontimage()
New (empty) integer images can be created as follows:
image Newlmg:=integerimage(“,bytes,sign, x,y)
Where “" is a null string, bytes = no. of bytes in the image (1, 2, or 4),
sign = (O=unsigned, 1=signed), and x & y = pixel dimensions.
New (empty) real images can be created as follows:
image Newlmg:=realimage(”,bytes, x,y)

There is no sign value to a real image, as by definition it can handle negative
numbers, bytes can be 4 or 8.

Maths on image variables is similar to any other variable:
image Flatimg:=getfrontimage()
image Rootimg=sqrt(Flatimg)
image Squaredlimg=Flatimg*Flatimg

2. Explicit vs Implicit Image Creation

The previous example of creating an image by calling an image
creation function is referred to as Explicit Creation eg

image myimg:=binaryimage("’,xsize, ysize)
Explicitly creates an image called myimg, which is a binary image of
dimensions xsize and ysize.

Fortunately DM also creates images implicitly by context. This
avoids the need to define image types and sizes every time a new
Image is created.

Implicit creation will automatically create an image of the appropriate
type and size, based on the context of the image operation eg

Image newimg= oldimg+5
Creates an image variable called newimg, which is the same size as
oldimg and is of type real.

There are three default image types for implicit creation:
Real, Complex and RGB (binary & integer operations default to real)

Exercise 2b. Declaring Image Variables

« Open the image ‘Polycrystalline gold pattern’.

* Open script 2b and run it.

Declare some image variables
Carry out simple image maths

image Frontlimg, Sqgrtimg
Frontimg:=getfrontimage()
Sqrtimg=sqrt(Frontimg)

showimage(Sqrtimg)

‘75 DigitalMicrograph
File Edit Display Process Analysis MWindow Microscope Spectrum EELS DIFPACK Custom DiffTools EELSTools User Image Proc Diffraction Palettes Help

ERARBELERESR (NMAA/OO0KNEG LR [[1.7 ¢ 0

v Histogram

5 2b Declaring Image ¥a =] 9]
// Introduction to Digital Micrograph Scripting :]
// A workshop presented by D. R. G. Mitchell

S/ at ACMM 20, Perth, Sunday 10th February, 2008

A Image Status // Excercise 2: understanding and using variables
// script 2b: pDeclaring Image variables

// Main script starts here

// Declare Image variables

Image FrontImg, SqrtImg

4 Target ¢ .
O Page ira J: Square Root of Image // Get the foremost image

FrontImg:=getfrontimage()

®m): Image

// Calculate the square root of it

sqrtImg=sqrt(FrontImg)

// Display the square root image and name it
ShowImage (SqrtImg)
Setname(sSqrtImg, "Square Root of Image")

|

Control

setname(Sqrtimg, “Square Root of Image”)

2. Test your Image Variable Skills

Write a script to:
Calculate the min, max & mean values in the original gold pattern.
Display these values in the Results Window.

Useful Script Commands:
iImage ImageVar (declares an image variable called ImageVar)

ImageVar:=getfrontimage() (gets foremost image as imagevar)
minmax(ImageVar, min, max) (gets the min/max (numbers) of an image)
number meanval=mean(ImageVar) (gets the mean of an image)

* NB the answer to this is in the Answer Scripts folder as:

2. Special Image Variables : ID

« Every image in DM has an identifying reference letter .
« These can be used in scripts to refer to images.
« For example the script:

Setname(a, “New Image Name”)

« Changes the name of image a (not case sensitive) from ‘untitled’ to ‘New
Image Name'.

« Scripts can use ID variables without declaring them or ‘getting’ them - this is
very handy for ‘on-the-fly’ scripting to manipulate images directly.

‘7 DigitalMicrograph

‘5 DigitalMicrograph
File Edit Display Process Analysis Window Microscope Spectrum EELS DIFPACK Custom DiffTor File Edit Display Process Analysis Window Microscope Spectrum EELS DIFPACK Custom DiffTools

[GAHBP e wan “OAA/O0KNEG 4R [GEE@BEW o2 S ®MAA/OONERG 4R

5 J: Square Root of Image

@)

- Image Status

Exercise 2c. Special Image Variables :
Intrinsic

* Intrinsic variables are ‘intrinsic’ to images.

* icol - the position of a column in an image.

* irow - the position of a row in an image.

« iradius - the distance from the geometric centre of an image.
« Others: iheight, ipoints, itheta, iwidth, iplane

Note image origin in Imaae

DM is top left J
lrow=0

« Open and run script 2c 1

* Relate the resulting images with 9
the code which creates them
3

lcol=0 1 2 3 4

2. Image Sub-regions []

« Sub-regions of images can be defined with [].

 The script:
image Frontimg:=getfrontimage()
image Sublmg=Frontimg|]

» Assigns a sub-region in Frontimg (defined by a rectangular region of
interest (ROI)) to Sublmg. If no ROl is present, Sublmg is set to
Frontimg

 The script :
Image Frontimg:=getfrontimage()
Image Sublmg=Frontimg|top, left, bottom, right]

» Assigns a sub-region of Frontimg to Sublmg. The region is defined by
four numbers : top, left, bottom right - in pixels.

» The sub-region must lie within the bounds of the image.
» The origin in images is the top left corner.

Exercise 2d Image Sub-regions []

‘ ’ “; I ‘75 DigitalMicrograph
pen Old eSt File Edit Display Process Analysis Window Microscope Spectrum EELS DIFPACK Custom Dif” Lois EELSi. ° User ImageProc Diffraction Palettes Help

CARBEEERER NMAA/ODONEG L] D7 - @4 %08
— -Ioi]

Image’ . = fewern 7 i"&E?ﬂé‘ﬁS?ErE?eﬁéEé‘? O e i =
.
Open and run script 2d.

// at ACMM 20, Perth, sunday 10th February, 2008

// 2: Understanding and Using variables

// script 2d: Image Sub-regions []

// Main script starts here

/ If a rectangular region of interest (ROI) s present in an image

/s
// the region so defined can be obtained with the [] operation
// If no ROI is present - then the whole image is selected.

% // Run this script with gold diffraction pattern foremost
// Get the foremost image
¢ image FrontImg:=getfrontimage()
Get ‘Gold Test A
- Target string ImgName=getname(FrontImg)

& Page

Image’ foremost.
Add an ROl to .,
the image. e
Run script 2d.

// Extract the sub-region from FrontImg (if present)

image SubImg=FrontImg[]

- // set the name sub-region to 'Sub-region of ' the image's name

setname(SubImg, "Sub-region of "+ImgName)

// Display the sub-region image

1 showimage (SubImg)

// set the position of the image to the top left corner
7 o 1 alel v: 204 setwindowposition(subImg, 142,24)
Alv| w: 263
alvl H: 233

< Display Control
] ——

Brightness: 0.50
—

] Gamma: 0.50
¥ Acquisition Status -

- Progress

2. Review

« Learning Objectives:
» What the different types of variables are.
» How to declare variables.
» How to carry out simple operations with variables.
» Some special image variables and sub-area operations.

3. Operators

Learning Objectives:
» Understand the available operators.
» Use operators in scripts.

» Understand the difference between assignment (=) and assignment by
reference(:=).

3. Operators

Arithmetic:

» + addition : expr+expr

» - subtraction : expr-expr

> * multiplication : expr*expr

> [division : expr/expr

> ** exponentiation : expr**expr
Equality (return true=1 or false=0):

» == Equality expr==expr (works on strings to0)

» 1= Inequality expr!=expr (works on strings too)
Relational (return True=1 or False=0):

» <less than, <= less than or equal : expr<=expr

» > greater than, >= greater than or equal : expr>-expr
Logical (return True=1 or False=0):

» ! Logical NOT : lexpr

> |l Logical OR : expr || expr

» && Logical AND : expr && expr

Exercise 3a. Assignment vs Reference

iImage test=getfrontimage() (= works on all variable types).

» Means create a new image called test and make its contents equal (=)
to those of the frontmost image.

» The new image (test) has no title, no scale bar and is of type real,
regardless of the type of whether the original image is binary, integer or
real (implicit creation)

Image test:=getfrontimage() (:=works on images only).

» Means create a new image variable (test) and assign it by reference (:=)
so that it becomes a pointer to the frontmost image.

» The ‘new’ image is the frontmost image (no new window) and all the
original image details are present (name, scale bar etc).

« Open the image ‘Gold Test Image’.
* Run script 3a - then change the = to := and rerun the script.

3. Review

Learning Objectives:
» Understand the available operators.
» Use of operators in scripts.

» Understand the difference between assignment (=) and assignment by
reference(:=).

4. If Statements

« Learning Objectives:
» Understand the use of various forms of If() statements.
» Understand the use of !, = and == operators in if() statements.

Exercise 4a. If() Statements with various
operators

» If(expr) statements evaluate an expression (expr).

* They have the following forms:
> If(expr is true) execute this command eg.
if(3>2) okdialog(” Yes")
will display “Yes” on the screen because 3 is greater than 2.
> If(Itrue) execute this command (! Is the logical NOT).
if(!(2>3)) okdialog(" Yes”)
will display “Yes” because 2>3 is Not True.
if(1(3>2)) okdialog(“ Yes")
will display nothing because 3>2 is True.

* Run script 4a - work through the list of if() statements and predict
whether they will display “Yes’ on the screen. Remove the
comments (//) from the statement and run the script - were you
correct?

 Replace the comments and move on to the next if() statement.

4. If() continued

e Other forms of If() statements.

* If(expr)
{
if expr is true execute all the code between these {}
}
If(expr)
{
if expr is true execute all the code between these {}
}
Else
{

otherwise execute all the code between these {}

4. Test Your if() Skills

« Write a script which :

» Creates two number variables : First, Second

» Assigns values to the two variables.

» Evaluates these variables reporting on three possible conditions:
1. First has a value greater than Second.
2. First has the same value as Second.
3. First has a value less than Second.

» Reports on the condition by showing the status on screen.

» Test your script with values of First and Second of:
= 5and 10; 10 and 10; and 15 and 10 respectively.

Useful Script Commands:
okdialog(string prompt)

If(expr) command (If expr is true then command is executed)

« NB the answer to this is in the Answer Scripts folder as:

4. Review

« Learning Objectives
» Understand the use of various forms of If() statements
» Understand the use of |, |= and == operators in if() statements

5. Inputs and Outputs

« Learning Objectives:
» How to source strings/numbers/images.
» How to display answers.
» How to save an image.

Exercises 5a,b Getting Strings &
Numbers and Displaying Answers.

Prompt for strings with the getstring() command:
number getstring(string prompt, string default, string value)

» number takes values of 1 (True) if OK is pressed, O(False) if Cancel is
pressed in the getstring() dialog.

Prompt for numbers with the getnumber() command:
number getnumber(string prompt, number default, number value)
Display Answers with:
showalert(string, number alerttype) (alerttype has values 0-3)
okdialog(String prompt)
Run script 5a and identify the problems with the data input method.
Run script 5b - see how the data input problems have been solved.

5. Sourcing Displayed Images

 The foremost image is sourced with:
Image front:=getfrontimage()

« Select a single image with a prompt:
getoneimagewithprompt(string prompt, string “*, image select1)
» There are 3 variants of this command :
gettwoimages . . ; getthreeimages. . ; getfourimages . .
With the appropriate number of image variables added :
.. . iImage select2; . . image select3; . . image select4).

» These functions return 1 when OK is pressed and O when Cancel is
pressed.

5. Opening and Saving Images

Image files can be opened by putting up a dialog to identify the file, then
opening the file as follows:
string path
if(lopendialog(path)) exit(0)
image HDImage:=openimage(path)
showimage(HDImage)
Note use := openimage() rather than =openimage() unless you want to
make a copy of the image file.
The foremost image can be saved in Gatan format as follows:
image front:=getfrontimage()
string prompt, default, savepath
if(lsaveasdialog(prompt, default, savepath)) exit(0)
saveasgatan(front, savepath)
There are related commands for other image formats such as
saveastiff(front, savepath)

5. Image Manipulation and Saving

» Write a script to:
> Get the gold diffraction pattern out of several images displayed on screen.
» Prompt the user for a number (divisor value) (range 0.1-5).
> Select the top left quarter of the image.
» Divide this region by the divisor value supplied and display the image
» Save the resulting image to the desktop.

Useful Script Commands:

getoneimagewithprompt(prompt, default, imgvar) (Select a displayed image)
getnumber(prompt, defaultno, enteredno) (Prompt for a number)

img[top, left, bottom, right]= expr (set the sub area of img to expr)

showimage(imgvar) (shows imgvar - brings it to front)

showalert(alert, type) (shows a string as an alert string of type 0-3)
If('saveasdialog(prompt, “, path)) exit(0) (get a save path - exits on Cancel)
saveasgatan(image, path) (saves image to path)

getsize(image, xsize, ysize) (gets the size of image in x and y)

« NB the answer to this is in the Answer Scripts folder as:

5. Review

« Learning Objectives:
» How to source strings/numbers/images.
» How to display answers.
» How to save an image.

6. Tert(), Loops and More Variables

Learning Objectives:
» Understand the power of tert().
» Implementation of loops : for() and while().
» Global vs Local variables.

6. My Favorite Command : Tert()

Tert () is an extremely useful command for manipulating images. It
allows the equivalent of an if(expr) condition to be applied to each
pixel in an image - in parallel ie it is fast.
It has the general form:

number Tert(expr, number trueval, number falseval)
It can take numbers or images as its arguments and return.
Example:

imgvar=tert(imgvar<O0, 0, imgvar)
If the levels in imgvar are <0 (True) set those values to 0. If this

condition is False, then the values are left unchanged - this is really

useful for stripping out negative numbers - such as occur in
EFTEMS.

Write a one line script using the image ID variable with tert() to
remove negative numbers from the gold diffraction pattern.

Exercises 6a,b. Using Tert()

Tert() statements are not limited to changing the image being
evaluated.

Thresholding/Measurement with tert() can be done using binary
Images to store grey scale levels.

This script excerpt shows how to measure the number of pixels in an
image (front) between the grey scale levels 80 and 120 inclusive. The
regions where this condition is True are set to True(1) in a binary
image (binimg).

image binimg:=binaryimage("”, xsize, ysize)

binimg=tert(front>=80 && front<=120, 1, 0)
Open the ‘Gold Test Image’ and experiment with different threshold
values in script 6a.

Open the ‘Gold Diffraction Pattern’ and experiment with script 6b.

6. For() and While() Loops

* Increment or decrement processes can be achieved with for() loops.
Number i
For(i=0; i<var; i++)

{

Code here is repeatedly executed while i is less than var - break terminates

}

Once i is no longer less than i script execution continues here
* i++is a shorthand meaning i=i+1, i-- means i=i-1
» break will cause the loop to terminate and the script to continue
« while(expr)

{

creates a loop which continues while ever expr is True - break terminates

}

« Write a script using for() which writes the numbers 0-10 incl., and the sum of
their squares (02), (02+12),(02+12+22) etc to the Results window.

« Edit the script so that it terminates if the sum of the squares >99.
 NB Answer is in Answer Scripts folder :

Exercises 6c¢,d. Global vs Local Variables

In DM variables can be Global or Local:

» Global variables can be accessed and changed (be within scope) from
anywhere in the script.

» Local variables can only be accessed and changed (be within scope)
from within the section of code they are declared in.

> It is permissible to have a global and local variable of the same name.
Controlling access to Global variables is easy in short scripts.

In complex scripts using Global variables extensively can create
runtime errors which are difficult to trace. Local variables help.

Variables are made local when declared within a section of code
bounded by { } ie within if(), while(), for() statements.

Functions (see later) contain only local variables and their extensive
use can avoid the issues described here.

Run scripts 6¢ and 6d.

6. Review

« Learning Objectives:
» Understand the power of tert().
» Implementation of loops : for() and while().
» Global vs Local variables.

7. Functions

Learning Objectives:
» Understand the advantages of using functions.
» Function return types and arguments.

» Getting more than one return from a function using arguments passed
in by reference.

7. Functions

* Writing scripts as sequential instructions is fine for short scripts of
perhaps a dozen lines or less.
« Itis a very poor way of writing longer scripts because:
> Logical flow is difficult to follow.
» Debugging is difficult.
» Testing is laborious - dependency on other (buggy) code.
» Sections of code may need to be duplicated - code bloat.
» Maintaining the code is challenging.
» Re-using code fragments in other scripts is nearly impossible.
» Management of variables is a difficult.

* All these problems can be resolved by writing code in the form of
functions.

* When writing longer scripts you MUST use functions!!!!

7. Advantages of Functions

Functions are standalone pieces of code either embedded in a script
or saved as a library.

A function is a black box which typically requires a very limited
range of inputs (arguments) and produce a very limited range of
outputs (returns).

Once written, what happens inside a function becomes unimportant
to the script. The only thing which matters are the inputs and the
outputs.

Variables in a function are local and are unaffected by the rest of the
script.

Functions can simply be copied from script to script.

Functions are called from the main script, leading to very simple
scripts.

Functions can be developed in isolation to the main script
simplifying debugging.

7. The Forms of Functions

* The simplest function - no arguments, no returns.

« All functions must be declared with a return type: void, image, string,
number etc.

« void is the return type when the function returns nothing.
« There should be no external dependencies eg on Global Variables.

void MyFunction()
{

Function code goes here

}

/[Main script
Myfunction()

Exercise 7a. A Simple Function

void SayGDay()
{
okdialog(“G’Day Scripters”)
return

}

// Main program
SayGDay()

« Important: The function must be declared before it is called, so functions are
usually placed at the start of a script.

« At declaration functions must specify a return type. If they return nothing,
the type is void.

* Open script 7a - run it.

« Remove the function call (SayGDay()) from the script then install it as a
library.

* Write a one line script to access it.

Exercise 7b. Returns from Functions

« Functions can return a single variable only - which can be of any
type - string, number, image etc.

number CalculateSquare(number EnteredValue)

{
number SquaredValue=EnteredValue*EnteredValue
return SquaredValue

}

/[Main program
number Anumber=5, SquaredValue
SquaredValue=CalculateSquare(Anumber)

* Run script 7b

Exercise 7c. Multi-argument Functions

* Functions can take any number of arguments of any type.
 Too many arguments will make the function cumbersome to use.

« Try and keep functions simple - write 2 simple functions rather than
one complex one.

number CalculateArea(number length, number breadth)
{
number area=length * breadth)
return area

}

// Main program
number mylength=5, mybreadth=10, myarea
myarea=CalculateArea(mylength,mybreadth)
 Run script 7c

Exercise 7d. Functions - returning more
than one value

* Only one variable can be returned from a function.

« This limitation can be overcome by passing in arguments to a function by
reference with the use of &.

* Here the function changes the value of the reference arguments.
void RootSqgr(number myvalue, number &squareval, number &rootval)

{
squareval=myvalue*myvalue
rootval=sqrt(myvalue)
return

}

/[main program

number testval=25, testsqrd, testroot

RootSqr(testval, testsqgrd, testroot)

okdialog(“My Number="+testval+” Square=“+testsqrd+” Root="+testroot)
* Run script 7d.

7. The Ideal DM Script

« The vast majority of the script functionality is declared in functions.
« The main script is predominantly a handful of function calls.

// Functions begin here

type Function1()

{
}
type Function2()
{
}

etc

// Main program

Function1()

Function2()

etc

* NB type is void, image, number, string etc.

7 Review

Learning Objectives:
» Understand the advantages of using functions.
» Function return types and arguments.

» Getting more than one return from a function using arguments passed
in by reference.

8. Debugging and Good Scripting
Practice

« Learning Objectives:

» Understand the limitations of the DM software development
environment.

» Good habits for creating robust and maintainable code.
» Debugging techniques.

8. Debugging and Good Scripting
Practice

« Learning Objectives:

» Understand the limitations of the DM software development
environment.

» Good habits for creating robust and maintainable code.
» Debugging techniques.

8. Good Scripting Habits

Add a title, version, date and detailed description at the start of your
script.

Annotate scripts with comments and put spaces before and after.

Use simple functions wherever possible with no external
dependencies.

Limit the use of global variables.
Use intuitive variable names.
Indent loops and if statements especially where nested.
for(i=0; i<20; i++)
{

ExecuteMyFunction(i)

}

Break up scripts into blocks of 4 lines with spaces between.

Save scripts under different version names (080210 1a script name)
on completion of each development stage - every 10mins or so.

8. Debugging - Interpretation Errors

Script errors are reported in a dialog and potential matches are
suggested in the Results Window.

The insertion point moves to where the error occurred.
The offending command is highlighted .

i+ DigitalMicrograph

File Edit Display Process Analysis Window Microscope Spectrum EELS DIFPACK Custom DiffTools EELSTools User Image Proc Diffraction

=3=1= Tk BER (N ODAA/OONE S LR |2 %O &

-: K 75 ANSWER 5 Image Manipulation and Save = |E||l|

v

wearan | Faiciser 0,43 arsor. = Tip:Execute commands
S/ Calculate the pbosition of the region of interest to adjust aS Single |ine Scripts With
lecs iz selecting, xsize) . x| no arguments or returns

right=xsize-left

7

EE%%EEEZZ—tOp Q El'l’::lglienl!::;::ch this argument list to any existing function J (e g g etS i Ze ()) to :
a) get the syntax;

Image Status

< of7 - -
2 4 b) see if command exists.
=10l x|
Line 31: No match for getsize(BasicImage, RealNumber) _l
A potential match is woid getsize(BasicImage img, RealNumber width, RealNumber height)
A4 Target

[7]

8. Debugging - Run Time Errors

Track variable values by inserting okdialog(), result() or
showimage() commands which output them.

Stop the script by inserting exit(0) at appropriate points.
|solate single commands by commenting them out with //.
Isolate blocks of commands by enclosing them between
/*
Commands here are ignored
*/
Major sources of error : variables not declared or misspelled, failure

to close loops correctly, confusing (=, ==) and (=, :=), confusing
local and global variables, wrong command syntax.

Exercise 8a,b Find the Bugs

Open script 8a. This script will not run, it contains a number of
interpretation errors.

The script simply carries out some maths on the supplied constants
Debug the script and get it to run.
It should put up a dialog with the answer.

Open script 8b. This script will not run. It contains a number of
interpretation errors as well as runtime errors.

The script should print the 0 - 5 multiplication table to the Results
Window.

Can you find the bugs?

NB Debugged scripts are in Answers folder as etc.

8. Review

Learning Objectives:

» Understand the limitations of the DM software development
environment.

» Good habits for creating robust and maintainable code.
» Debugging techniques.

9. Scripting Resources - Online Help

Online help contains good example code and explanations. Specific
commands can be hard to find quickly.

‘i DigitalMicrograph
File Edit Display Process Analysis Window Microscope Spectrum EELS DIFPACK Custom DiffTools EELSTools User ImageProc Diffraction Palettes Help
sREEEEERER (X DAA /OOANE G L3 |BAE2 0 |70 8T R
N B0 2 pigitalMicrograph Help B I [4]
- Histogram & = @ g‘ E_
Hide Back Fowad Home Print Options
Lontents Ilndex | ﬁearchl Favorjlesl R =
= (@ Digte Mogoph Types and Variables
Overview
g IE‘M Procedures Variables are used to store values in a script. The type of a variable determines the kinds of things that
e can be represented with it. The DigitalMicrograph script language has types for the representation of
RS 1> o A @ Image Display numbers, images, and strings
Q Image Documents : ges, gs.
0 Image Processing and Analysis
@ Reference Types
= () Seripting
2§ nd . . .
2] Expessons The basic script language types are: | |
(2] Statements
- Target 2] Functions realnumber
@ Objects complexnumber
[2] Image Operations rgbnumber
% Packages realimage
- File Input and Output compleximage
N Slice (2] Utiity Functions r bir’r31a o o
Q Example Scripts g g
c realsubarea
= ([Reference |
@ Script Functions By Categ comp exsubarea
@ Spectroscopy rgt_)subarea
@ EELS string
- Control . .) . . .
In addition, 'number" is shorthand for realnumber’, 'image' is shorthand for 'realimage’, 'subarea’ is
shorthand for 'realsubarea’.
Variables
¥ Display Control A variable has a name and a type. Variables must be declared before being used, with the exception of
image letters and intrinsic variables. The type of a variable is specified in its declaration.
Variable names must start with a letter an be made up from the letters a-z, A-Z, the numbers 0-9, and the
underline character ("_"). Examples of valid variable names are count, B123, r2d2, macStyle, and
—_— unix_style.
¥ Acquisition Status.
al | o Variable Declaration =l

9. Scripting Resources - DMSUG

The Digital Micrograph Scripting Users Group (DMSUG).
~80 subscribers including Gatan staff.
https://lists.asu.edu/cgi-bin/'wa?A0=DMSUG

=10/

l
| A

Sl B ks
|

1) Search Engines.
&) DM Script Database
e;] GATAN Accessories for TEM & SEM

&) Google

“+” DMSUG List
"

Listhame@asu.edu
DigitalMicrograph Scripting Users Group

Options: LogIn | Get Password

Login Required

LISTS.ASU.EDU e %

=
) - T —

9 Scripting Resources - Script Command
Web Archive (on CD and DM Script Database)

» Originally Gatan posted a full listing of scripting commands on the
web - it is now incorporated into the online help.

« ‘DM Script and Dialog’ functions is a web archive of the original
web-based listing.

« Use it to find commands quickly by keyword searching (ALT +f).
* Look for candidate commands for the functionality you require.
* Much quicker than looking in the online help.

String GetLabel(ImageReference)
Return the image label of the image.
-t
void GetLimits(ImageReference, NumberVariable lowPtr, NumberVariable highPtr)
Stores display limits into the lowPtr and highPtr variables.
i
void GetMaximalDocumentWindowRect(Number options, NumberVariable top, NumberVariable left, NumberVariable bottom, NumberVariable right)
Gets the bounds of the content region of the largest document window.
i
String GetName(ImageReference)
Return the name of the image's image document.
=t
ImageReference GetNamedImage(String name)
Return the image with the image document name.
-t
Boolean GetNamedImage(ImageVariable, String name)
Store the image with the image document name into the image variable. Return 1 if one is found: return 0 otherwise.
i
Number GetNextImageID(Number id)
Return the id of the image window following the image with the given id.

il

9. Digital Micrograph Script Database

Repository for dozens of donated scripts, tutorials and example
scripts.

Please consider donating your scripts.
http://www.felmi-zfe.tugraz.at/dm_scripts/dmscript1.html

/) pigital Micrograph Script Database - Microsoft Internet Explorer o [=] 3]
Fle Edt View Favorites Took Help

o |

Qeak - () - (x| Z] 0|) seach | Favories €2) - 3

address [] http: fwww. Felmi-zfe. tugraz.at/dm_scriptsjdmscript1.html ~ e ‘Links
Favorites x A
[add... [organize...

() ANSTO

E)tinks Digital Micrograph'~ Script Database

() Microsoft

|) Search Engines

€] DM Script Database

&) GATAN Accessories for TEM & SEM

) coose DM Script Database A Database Search

[fatest updates | [RSs

Submit a DM Script

1. All scripts or at these web| . They may be used and shared freely.

2. We will neither take responsibility for any problems caused by the scripts, norwill we guarantee for their functionality or even fest them.
The scripts and tutorials sent to us will merely be stored, sorted and linked together to make them easily available to everyone.

3. All questions related to the scripts & tutorials may be addressed to a given contact address or to the DMSUG.

4. Questions & comments concerning the errors / broken | be sentto: dmscript @ felmi-zfe.at

5.

We reserve the right to remove suspicioustharmful software/scripts from the webpages at any time without announcement.

Digital Micrograph is (tm) by Gatan, Inc.
*We suggest you check out BlogLines or Google's new RSS reader. - Most newerweb browsers also have a builtin RSS Reader.

This database website was launched on Nov 26%, 2002. It is maintained by the FELMIZFE of the Graz University of Technology.

<« | »
|&] Done

[T et

10. Scripting Potential

Scripting is very powerful, enabling DM to be tailored to meeting the
experimentalist’s needs.

Scripts range from a simple image manipulation through to
sophisticated dialogs for hardware control.

Experiment!

' Digital HCD Control

— Frequency

Freq/Hz [~ Freq/10

Amplitude

2047 Amplitude Step Size

=10l

1

2 ¥ | & 2 ¥ o

FreqUp FreqDown Defaults AmplUp Ampl Down 100
~ Control

Go/Stop

HCD Rock

Raster

Arc

Manual

— Angles

Range/Deg

360

Angle/Deg
0

2 ¥

Range Up Range Down

2 ¥

Angle Up Angle Down

— Manual Position

X Position

|2047

Y Position

|204?

XKUp X Down
Y Up Y Down

[DHCD Response: |

|

Digital HCD Rev. 3.5, May 2006, D.R.G. Mitchell, dim{®ansto.gov.au ﬂ

Script-based control
Interface for a
Digitally Controlled
Hollow Cone Device

Workshop Aims : Review

« To provide users with a basic understanding of :
» What scripts are.
» How they work.
» What scripts can do.
» How to write scripts.
» What scripting resources are available.

« Enlarge the pool of scripting talent.

Scripting Digital Micrograph™

Dave Mitchell
www.dmscripting.com
adminnospam@dmscripting.com (remove the nospam)

